Product Specification | Model Name | S101HWX34ED | |-------------|--------------------| | Description | 1280(RGB)x800 Dots | | Description | 10.1" TFT LCD | | Date | 2020/08/18 | | Revision | 2.0 | | Approved | Check | Prepared | | | |----------------|----------------|----------------------|--|--| | by/Date | by/Date | by/Date | | | | ZHP 2020/08/18 | HZX 2020/08/18 | Yigui.Han 2020/08/18 | | | | Customer Approval | | | | | |-------------------|--|--|--|--| | | | | | | | Date | | | | | #### **Table of Contents** | 1 Record of Revision | 3 | |---------------------------------------|----| | | | | 2 General Specifications | 4 | | 3 Input/Output Terminals | 5 | | 4 Absolute Maximum Ratings | 6 | | 5 Electrical Characteristics | 7 | | 6 Optical Characteristics | 11 | | 7 Environmental / Reliability Tests | 15 | | 8 Mechanical Drawing | 17 | | 9 Packing | 18 | | 10 Precautions for Use of LCD modules | 19 | #### 1 Record of Revision | Rev | Issued Date | Description | Editor | |-----|-------------|--------------------------------------|--------| | 1.0 | 2020/06/08 | First Release. | ZHP | | 2.0 | 2020/08/18 | Update the backlight drive condition | ZHP | ### 2 General Specifications | | Feature | Spec | | | |-----------------|--------------------------------|--------------------------------|--|--| | | Size | 10.1 inch | | | | | Resolution | 1280(Horizontal)*800(Vertical) | | | | | Interface | LVDS | | | | | Connect type | Connector | | | | | Color Depth | 16.7M | | | | Characteristics | Technology type | a-Si | | | | | Display Spec. Pixel pitch (mm) | 0.1695(H)×0.1695(V) | | | | | Pixel Configuration | R.G.B. Vertical Stripe | | | | | Display Mode | Normally Black | | | | | Driver IC | EK79202 | | | | | Viewing Direction | ALL | | | | | LCM (W x H x D) (mm) | 229.46(W)*149.10(H)*4.5 (D) | | | | | Active Area(mm) | 216.96(H)x 135.60(V) | | | | Mechanical | With /Without TP | Without TP | | | | | Weight (g) | TBD | | | | | LED Numbers | 45 LEDs | | | Note 1: Requirements on Environmental Protection: RoHS Note 2: LCM weight tolerance: +/- 5% ### **3 Input/Output Terminals** | No. | Symbol | Description | Note | |-------|------------|-----------------------------------|------| | 1 | NC | No connection | | | 2-3 | VDD (3.3V) | Power Supply | | | 4 | NC | No connection | | | 5 | RESET(NC) | No connection | | | 6 | STBYB(NC) | No connection | | | 7 | GND | Ground | | | 8 | RXIN0- | - LVDS differential data input | | | 9 | RXIN0+ | + LVDS differential data input | | | 10 | GND | Ground | | | 11 | RXIN1- | - LVDS differential data input | | | 12 | RXIN1+ | + LVDS differential data input | | | 13 | GND | Ground | | | 14 | RXIN2- | - LVDS differential data input | | | 15 | RXIN2+ | + LVDS differential data input | | | 16 | GND | Ground | | | 17 | RXCLK- | - LVDS differential clock input | | | 18 | RXCLK+ | + LVDS differential clock input | | | 19 | GND | Ground | | | 20 | RXIN3- | - LVDS differential data input | | | 21 | RXIN3+ | + LVDS differential data input | | | 22 | GND | Ground | | | 23 | SDA(NC) | No connection | | | 24 | SCL(NC) | No connection | | | 25 | GND | Ground | | | 26 | CS(NC) | No connection | | | 27 | NC | No connection | | | 28 | LVBIT(NC) | No connection | | | 29 | NC | No connection | | | 30 | GND | Ground | | | 31-32 | LEDK | Power for LED backlight (Cathode) | | | 33-38 | NC | No connection | | | 39-40 | LEDA | Power for LED backlight (Anode) | | ### **4 Absolute Maximum Ratings** | Item | Symbol | MIN | Тур | MAX | Unit | |------------------------|--------|--------|-----|--------|--------------| | Supply Voltage | VDD | -0.3 | 3.3 | 3.6 | V | | Input voltage "H"level | VIH | 0.7VDD | - | VDD | V | | Input voltage "L"level | VIL | 0 | - | 0.3VDD | V | | Operating Temperature | TOPR | -20 | - | 70 | $^{\circ}$ C | | Storage Temperature | TSTG | -30 | - | 80 | $^{\circ}$ C | #### **5 Electrical Characteristics** #### 5.1 POWER ON/OFF SEQUENCE Power on sequence with PMODE=H Page7 of 19 #### 5.2 Driving Backlight | Item | Symbol | MIN | ТҮР | MAX | Unit | Remark | |-----------------------------|-----------------|-----|-------|-----|------|--------| | Forward Current | I _F | - | 360 | - | mA | | | Forward Voltage | V_{F} | 14V | 16V | 18V | ٧ | | | Backlight Power consumption | W _{BL} | - | 5.76W | - | W | | | LED Lifetime | | - | 50000 | - | Hrs | | Note 1: Each LED: IF = 40 mA, VF = 3.2 + /0.3 V. Note 2: Optical performance should be evaluated at Ta=25 $^{\circ}$ C only. Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life Time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data. **CIRCUIT DIAGRAM** #### **5.3 RESET TIMING CHARACTERISTICS** When RESETB of the reset pin equals to Low, it will be in the condition of reset. When it is in the condition of reset, it will make the device recover the initial set. However, in order to avoid the reset noise cause reset, there is a mechanism to judge about whether the reset is needed or not. The closed interval of Low can be shown as the following. (Test condition: VDDIO=2.3V~3.6V, VSS=0V, TA=-20 ~+85) | | | | | Spec. | | | |-----------------------|--------|------------|------|----------------|-----|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max | Unit | | Reset low pulse width | Trst | | 20 | (- | - | μs | Figure 13.5: Reset timing #### **5.4** LVDS interface CHARACTERISTCS 8-bit LVDS input(LVBIT=H, LVFMT=H) | | For 1280RGBx800 | | The | | | | | |---|------------------------------|--|--------|------|-------|------|------| | | Parameter | | Cumbal | | Linit | | | | | | | Symbol | Min. | Тур. | Max. | Unit | | | DCLK frequency @Frame rate=6 | DCLK frequency @Frame rate=60Nz (LVDS) | | 66.3 | 72.4 | 78.9 | MHz | | < | HSYNC period time | | Тн | 1380 | 1440 | 1500 | DCLK | | | Horizontal display are | Тно | | 1280 | | DCLK | | | | | Min. | | | 1 | | | | | HSYNC pulse width | Тур. | Тнрw | | | | | | | | Max. | | 40 | | | | | | HSYNC back porch(with puls | se width) | Тнвр | 88 | 88 | 88 | DCLK | | | HSYNC front porch | | Тнгр | 12 | 72 | 132 | DCLK | | | VSYNC period time | | Tv | 824 | 838 | 872 | Н | | | Vertical display area | | TvD | | | Н | | | | | Min. | | | | Н | | | | VSYNC pulse width | Тур. | Tvpw | | 5597 | | | | | Max. | | | | 20 | | | | | VSYNC back porch(with puls | se width) | TVBP | 23 | 23 | 23 | Н | | | VSYNC front porch | | TVFP | 1 | 15 | 49 | Н | #### **6 Optical Characteristics** | Items | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remark | |-----------------------|----------------|--------------|-----------|-------|-------|-------|---------|--------| | | | θτ | | | 80 | - | | | | Viewing angles | | θ_{B} | Center | | 80 | - | Degree. | Note2 | | viewing an | gies | θ_{L} | CR≥10 | | 80 | - | Degree. | Notez | | | | θ_{R} | | | 80 | - | | | | Contrast R | atio | CR | Θ =0 | 800 | 1000 | _ | _ | Note1, | | 301141010111 | | | | | 1000 | | | Note3 | | Response ⁻ | Time | Ton | 25°C | _ | 25 | 35 | ms | Note1, | | Теоропос | | T_{OFF} | 20 0 | | 20 | | 1113 | Note4 | | | Red | Xw | | 0.568 | 0.618 | 0.668 | - | Note1, | | | rteu | Y_{W} | | 0.278 | 0.328 | 0.378 | - | Note5 | | | Green | X_W | | 0.285 | 0.335 | 0.385 | - | Note1, | | Chromaticity | | Y_{W} | Backlight | 0.492 | 0.542 | 0.592 | - | Note5 | | Cilionialicity | Blue | X_W | is on | 0.086 | 0.136 | 0.186 | - | Note1, | | | | Y_{W} | | 0.095 | 0.145 | 0.195 | - | Note5 | | | White | X_W | | 0.272 | 0.322 | 0.372 | - | Note1, | | | vvriite | Y_W | | 0.294 | 0.344 | 0.394 | - | Note5 | | Luminance Uniformity | | LU | | 70 | 75 | | % | Note1, | | | | LO | | 70 | 75 | _ | /0 | Note6 | | | | | | 900 | 1000 | | ad/m2 | Note1, | | Luminan | c e | L | | 800 | 1000 | | cd/m2 | Note7 | #### **Test Conditions:** - 1. IF= 20mA(one channel), the ambient temperature is 25°C. - 2. The test systems refer to Note 1 and Note 2. Note 1:Definition of optical measurement system. The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel. Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80). Fig. 1 Definition of viewing angle #### Note 3: Definition of contrast ratio Contrast ratio (CR) = Luminance measured when LCD is on the "White" state Luminance measured when LCD is on the "Black" state "White state ":The state is that the LCD should driven by Vwhite. "Black state": The state is that the LCD should driven by Vblack. Vwhite: To be determined Vblack: To be determined. #### Note 4: Definition of Response time The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%. Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD. Note 6: Definition of Luminance Uniformity Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area. Luminance Uniformity(U) = Lmin/ Lmax X100% L-----Active area length W----- Active area width Fig. 2 Definition of uniformity Lmax: The measured maximum luminance of all measurement position. Lmin: The measured minimum luminance of all measurement position. #### Note 7: Definition of Luminance: Measure the luminance of white state at center point. ### 7 Environmental / Reliability Tests | No | Test Item | Condition | Remarks | |----|---------------------------------------|---|--| | 1 | High Temperature
Operation | Ts= +70℃, 96hrs | IEC60068-2-1:2007
GB2423. 2-2008 | | 2 | Low Temperature Operation | Ta= -20℃, 96hrs | IEC60068-2-1:2007
GB2423.1-2008 | | 3 | High Temperature
Storage | Ta= +80°C,96hrs | IEC60068-2-1:2007
GB2423. 2-2008 | | 4 | Low Temperature
Storage | Ta= -30℃, 96hrs | IEC60068-2-1:2007
GB2423.1-2008 | | 5 | High Temperature & Humidity Operation | Ta= +60℃, 90% RH max,96 hours | IIEC60068-2-78:2001
GB/T2423.3-2006 | | 6 | Thermal Shock
(Non-operation) | -30℃ 30 min ~ +80℃ 30 min
Change time: 5min, 20 Cycle | Start with cold
temperature,
end with high
temperature
IEC60068-2-14:1984,
GB2423.22-2002 | | 7 | ESD | C=150pF, R=330 Ω, 5 points/panel , Air:±8KV, 5 times Contact: ±4KV, 5 times (Environment: 15°C ~ 35°C, 30% ~ 60%, 86Kpa ~ 106Kpa) | IEC61000-4-2:2001
GB/T17626.2-2006 | | 8 | Vibration
(Non-operation) | Frequency range: 10~55Hz, Stroke: 1.5mm, Sweep: 10Hz~55Hz~10Hz 2 hours for each direction of X .Y. Z. (6 hours for total) | IEC60068-2-6:1982
GB/T2423.10-1995 | | 9 | Mechanical Shock
(Non-operation) | Half Sine Wave
60G ,6ms,±X,±Y,±Z
3times for each direction | IEC60068-2-27:1987
GB/T2423.5—1995 | | 10 | Package Drop Test | Height: 60 cm,
1 corner, 3 edges, 6 surfaces | IEC60068-2-32:1990
GB/T2423.8-1995 | #### Notes: - 1. The test result shall be evaluated after the sample has been left at room temperature and humidity for 2 hours without load. No condensation shall be accepted. The sample will not be accepted if appear these defects: - 1). Air bubble in the LCD; - 2).Seal leak - 3).Non-display - 4).missing segments - 5). Glass crack - 6).CR reduction >40% - 7).IDD increase >100% - 8).Brightness reduction >50% - 9). Color coordinate tolerance > 0.05 - 2.≤7.0 inch: The size of sample is 5pcs; - >7.0 inch: The size of sample is 2pcs; - 3. One test sample must complete each test item; - 4.In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part. - 5.In the test of High Temperature Operation and High Temperature & Humidity Operation ,the operation temperature is the surface temperature of module. #### 8 Mechanical Drawing #### 9 Packing #### **Packing Method** - 1. Put module into tray cavity: - 2. Tray stacking - 3. Put 1 cardboard under the tray stack and 1 cardboard above: - 4. Fix the cardboard to the tray stack with adhesive tape: - 5. Put the tray stack into carton. - 6. Carton sealing with adhesive tape. #### 10 Precautions for Use of LCD modules #### 10.1 Handling Precautions - 10.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc. - 10.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water. - 10.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. - 10.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. - 10.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents: - Isopropyl alcohol - Ethyl alcohol Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following: - Water - Ketene - 10.1.6. Do not attempt to disassemble the LCD Module. - 10.1.7. If the logic circuit power is off, do not apply the input signals. - 10.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment. - 10.1.8.1. Be sure to ground the body when handling the LCD Modules. - 10.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground. - 10.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions. - 10.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated. #### 10.2 Storage Precautions - 10.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. - 10.2.2. The LCD modules should be stored under the storage temperature range If the LCD modules will be stored for a long time, the recommend condition is: Temperature : 0°C ~ 40°C Relatively humidity: ≤80% 10.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas. #### 10.3 Transportation Precautions The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.